Abstract

Circulating tumor cells (CTCs) usually shed from primary and metastatic tumors serve as an important tumor marker, and easily cause fatal distant metastasis in cancer patients. Accurately and effectively detecting CTCs in a peripheral blood sample is of great significance in early tumor diagnosis, efficacy evaluation, and postoperative condition monitoring. In this work, a TiO2@Ag nanostructure is structured as a SERS substrate, rhodamine 6G (R6G) is used as a Raman signal molecule, the reduced bovine serum protein (rBSA) acts as a protective agent, and folic acid (FA) acts as a target molecule to specifically recognize cancer cells. A TiO2@Ag-based SERS bioprobe is successfully prepared with the feature of ultrahigh sensitivity, good specificity, low toxicity, and high accuracy in CTC detection. The remarkable SERS activity of the TiO2@Ag nanostructure is synergistically contributed by surface plasmon resonance and photon-induced charge transfer mechanism. The limit of detection for rhodamine 6G (R6G) molecules adsorbed on the TiO2@Ag SERS substrate is 5 × 10-14 M, and the corresponding SERS enhancement factor can reach 7.61 × 107. The designed TiO2@Ag-R6G-rBSA-FA SERS bioprobe is effectively utilized in detecting various cancer cells in rabbit blood, and the limit of detection (LOD) for the target cancer cell is 1 cell per mL. Notably, CTCs in peripheral blood of six clinical liver cancer patients are successfully recognized via the TiO2@Ag-based SERS bioprobe. Accurately recognizing CTCs in peripheral blood based on the TiO2@Ag-R6G-rBSA-FA SERS bioprobe is also carefully verified by in situ immunofluorescence staining experiments, which directly supports the CTC detection accuracy of the SERS strategy. These results demonstrate that the TiO2@Ag-based SERS bioprobe has great application potential in early screening and diagnosis of tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.