Abstract

This paper presents simulation of GaN high electron mobility transistor (HEMT) based device structures for the detection of toxic and hazardous gases like carbon monoxide (CO) and hydrogen (H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ), respectively. AlGaN/GaN heterostructures show large potential as sensors due to the presence of 2-dimensional electron gas (2-DEG) at the heterointerface. Due to widebandgap material properties, GaN based devices are highly suitable for extreme-environment applications. The sensors are proposed selective towards specific targets by the two different gate structures. The simulated AlGaN/GaN based HEMT with Pt/AlGaN Schottky gate structure can detect hydrogen gas with the concentrations as low as ppb level and with the linear output variations from ~ ppb to 100 ppm level. A new gate structure based on nanocrystalline stannic oxide (α-SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) layer for the selective and sensitive detection of CO gas is proposed. We report that the AlGaN/GaN HEMT structure with Pt/α-SnO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /AlGaN Metal-Oxide-Semiconductor (MOS) gate can be used to detect sub-ppm level of CO with the linear response upto 500 ppm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.