Abstract

High‐resolution temperature measurement is nerve‐wracking obstruction for precise characterization of many physical, chemical, and biological processes. To solve this problem, a novel microcavity–optomechanical–oscillation‐based thermometer is proposed. The microcavity serving as a link parametrically couples the mechanical resonator and optical resonator in the same structure and provides a natural and highly sensitive temperature transduction mechanism and ultrahigh‐resolution optical demodulation. The mathematical model of geometrical parameters, mechanics, and material properties for temperature response mechanism is established and verified experimentally. The proposed thermometer has a thermal sensitivity of 11 300 Hz °C−1 and an ultrahigh‐temperature resolution of 1 × 10−4 °C, to the best of one's knowledge, which is the highest temperature resolution with a silica cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.