Abstract

Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) of intact proteins is mostly performed using time-of-flight (TOF) based mass spectrometers, operated in linear mode. Linear MALDI-TOF systems provide limited mass resolving power and mass accuracy, which complicates assigning identities to the peaks in the MSI datasets. In this work we report ultra-high mass resolution MALDI-MSI based on 15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for the analysis of intact proteins directly from non-embedded and OCT-embedded mouse and human (control and type 2 diabetes) pancreas so that small endocrine compartments (islets of Langerhans) may be analyzed in control and pathological tissues. Sample preparation methods, in terms of increased sensitivity while limiting lateral diffusion of analytes, have been investigated. By combining protein localization, high mass accuracy, and the clearly resolved isotope patterns we were able to assign protein identities with additional confidence, including proteins of similar average mass and with interspersed isotopomers. These capabilities allowed us to ascertain the presence of many protein adducts that, with a low resolving power instrument, could be misinterpreted as distinct protein ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call