Abstract

Knowledge of pressure-induced structural changes in glasses is important in various scientific fields as well as in engineering and industry. However, polyamorphism in glasses under high pressure remains poorly understood because of experimental challenges. Here we report new experimental findings of ultrahigh-pressure polyamorphism in GeO2 glass, investigated using a newly developed double-stage large-volume cell. The Ge-O coordination number (CN) is found to remain constant at ∼6 between 22.6 and 37.9 GPa. At higher pressures, CN begins to increase rapidly and reaches 7.4 at 91.7 GPa. This transformation begins when the oxygen-packing fraction in GeO2 glass is close to the maximal dense-packing state (the Kepler conjecture = ∼0.74), which provides new insights into structural changes in network-forming glasses and liquids with CN higher than 6 at ultrahigh-pressure conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.