Abstract

The evolution of chromatography has led to the reduction in the size of the packing materials used to fabricate HPLC columns. The increase in the backpressure required has led to this technique being referred to as ultrahigh-pressure liquid chromatography (UHPLC) when the column backpressure exceeds 10000 psi (approximately 700 bar). Until recently, columns packed with sub-2-microm materials have generally fitted into two classes; either short (less than 5 cm) columns designed for use on traditional HPLC systems at pressures less than 5000 psi (350 bar), or capillary columns (inner diameters less than 100 microm). By using packing materials with diameters <2 microm to fabricate UHPLC columns, there is an increase in efficiency and a decrease in the analysis time that are directly proportional to the size of the packing material. In order to realize and exploit the increase in efficiency, however, the columns must maintain lengths typically associated with analytical columns (15-25 cm). We have packed 1 mm diameter, 150 mm in length columns with 1.5 microm packing material, and evaluated their performance in UHPLC. The pressure required to achieve optimum linear velocities in plots of plate height versus linear velocity was in the vicinity of 1104 bar (16000 psi). The 1.5 microm particle-packed column was compared with the more traditional 150 mm long analytical columns packed with 3 microm materials. This column showed an efficiency that was approximately twice that observed with the 3 microm packed column and a concomitant reduction in the analysis time, theoretically predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.