Abstract

Extensive experimental studies on the structure and density of silicate glasses as laboratory analogs of natural silicate melts have attempted to address the nature of dense silicate melts that may be present at the base of the mantle. Previous ultrahigh-pressure experiments, however, have been performed on simple systems such as SiO2 or MgSiO3, and experiments in more complex system have been conducted under relatively low-pressure conditions below 60 GPa. The effect of other metal cations on structural changes that occur in dense silicate glasses under ultrahigh pressures has been poorly understood. Here, we used a Brillouin scattering spectroscopic method up to pressures of 196.9 GPa to conduct in situ high-pressure acoustic wave velocity measurements of SiO2-Al2O3 glasses in order to understand the effect of Al2O3 on pressure-induced structural changes in the glasses as analogs of aluminosilicate melts. From 10 to 40 GPa, the transverse acoustic wave velocity (V S ) of Al2O3-rich glass (SiO2 + 20.5 mol% Al2O3) was greater than that of Al2O3-poor glass (SiO2 + 3.9 mol% Al2O3). This result suggests that SiO2-Al2O3 glasses with higher proportions of Al ions with large oxygen coordination numbers (5 and 6) become elastically stiffer up to 40 GPa, depending on the Al2O3 content, but then soften above 40 GPa. At pressures from 40 to ~100 GPa, the increase in V S with increasing pressure became less steep than below 40 GPa. Above ~100 GPa, there were abrupt increases in the P-V S gradients (dV S /dP) at 130 GPa in Al2O3-poor glass and at 116 GPa in Al2O3-rich glass. These changes resemble previous experimental results on SiO2 glass and MgSiO3 glass. Given that changes of dV S /dP have commonly been related to changes in the Si-O coordination states in the glasses, our results, therefore, may indicate a drastic structural transformation in SiO2-Al2O3 glasses above 116 GPa, possibly associated with an average Si-O coordination number change to higher than 6. Compared to previous acoustic wave velocity data on SiO2 and MgSiO3 glasses, Al2O3 appears to promote a lowering of the pressure at which the abrupt increase of dV S /dP is observed. This suggests that the Al2O3 in silicate melts may help to stabilize those melts gravitationally in the lower mantle.

Highlights

  • There are regions at the base of the mantle where anomalous reductions of seismic wave velocities occur (e.g., Garnero and Helmberger 1995; Mori and Helmberger 1995)

  • The structural changes that silicate glasses undergo cannot be assumed to be a completely valid model for silicate melts, previous experimental works have shown that the Si-O coordination numbers of SiO2 glass and a molten basalt appear to change in generally similar ways (Meade et al 1992; Lin et al 2007; Sato and Funamori 2008, 2010; Benmore et al 2010; Zeidler et al 2014; Sanloup et al 2013)

  • The radial distribution function (RDF) showed that the first peaks observed in SiO2 + 3.9 mol% Al2O3 glass (SA1) and SiO2 + 20.5 mol% Al2O3 glass (SA2) were at 1.62 Å and at 1.65 Å, respectively (Fig. 1)

Read more

Summary

Introduction

There are regions at the base of the mantle where anomalous reductions of seismic wave velocities occur (e.g., Garnero and Helmberger 1995; Mori and Helmberger 1995). The structural changes that silicate glasses undergo cannot be assumed to be a completely valid model for silicate melts, previous experimental works have shown that the Si-O coordination numbers of SiO2 glass and a molten basalt appear to change in generally similar ways (Meade et al 1992; Lin et al 2007; Sato and Funamori 2008, 2010; Benmore et al 2010; Zeidler et al 2014; Sanloup et al 2013). This suggests that the analogy of the structural change that silicate glasses undergo to the changes in silicate melts appears to work well for Si-O coordination number and probably for most structural aspects at least above 10 GPa (Sanloup et al 2013)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.