Abstract

The Hamiltonian, which determines the evolution of a quantum system, is fundamental in quantum physics. Therefore, it is crucial to implement high-precision generation and measurement of the Hamiltonian in a practical quantum system. Here, we experimentally demonstrate ultrahigh-precision Hamiltonian parameter estimation with a significant quantum advantage in a superconducting circuit via sequential control. We first observe the commutation relation for noncommuting operations determined by the system Hamiltonian, both with and without adding quantum control, verifying the commuting property of controlled noncommuting operations. Based on this control-induced commuting property, we further demonstrate Hamiltonian parameter estimation for polar and azimuth angles in superconducting circuits, achieving ultrahigh metrological gains in measurement precision exceeding the standard quantum limit by up to 16.0 and 16.1dB at N=100, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call