Abstract

Ultrafast current switching by a silicon sharpener based on successive breakdown of structures has been experimentally implemented and theoretically studied. A voltage pulse with an amplitude of 180 kV and a rise time of 400 ps was applied to a semiconductor device containing 44 series-connected diode structures positioned in a 50-Ω transmission line. After device switching, pulses with an amplitude of 150 kV and a rise time of 100 ps were obtained in the transmission line. Numerical simulation showed that the electric field near the p-n junction reaches the Zener breakdown threshold (∼106 V/cm) at an input voltage rise rate of more than 4 × 1013 V/s per structure achieved in the experiment, even when the diode structure contains technological impurities with deep ionization levels and a concentration of 1011 cm−3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call