Abstract

The thermoelectric (TE) community has mainly focused on improving the figure of merit (ZT) of materials. However, the output power of TE devices directly depends on the power factor (PF) rather than ZT. Effective strategies of enhancing PF have been elusive for Bi2Te3-based compounds, which are efficient thermoelectrics operating near ambient temperature. Here, we report ultrahigh carrier mobility of ∼467 cm2 V-1 s-1 and power factor of ∼45 μW cm-1 K-2 in a new n-type Bi2Te3 system with nominal composition CuxBi2Te3.17 (x = 0.02, 0.04, and 0.06). It is obtained by reacting Bi2Te3 with surplus Cu and Te and subsequently pressing powder products by spark plasma sintering (SPS). The SPS discharges excess Te but stabilizes the high extent of Cu in the structure, giving unique SPS CuxBi2Te3.17 samples. The analyzed composition is close to "CuxBi2Te3". Their charge transport properties are highly unusual. Hall carrier concentration and mobility simultaneously increase with the higher mole fraction of Cu contrary to the typical carrier scattering mechanism. As a consequence, the electrical conductivity is considerably enhanced with Cu incorporation. The Seebeck coefficient is nearly unchanged by the increasing Cu content in contrast to the general understanding of inverse relationship between electrical conductivity and Seebeck coefficient. These effects synergistically lead to a record high power factor among all polycrystalline n-type Bi2Te3-based materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.