Abstract

In this work, a hierarchical Ni3S2@MoS2 hybrid structure was synthesized by an effective strategy with a combined hydrothermal route and subsequent annealing treatment. When tested as supercapacitor electrodes, the Ni3S2@MoS2 composites exhibited high specific capacitance of 1418.5Fg−1 at 0.5Ag−1, which also showed a good capacitance retention of 75.8% at 5Ag−1 after 1250 cycles. The Ni3S2@MoS2 composites demonstrated 1.9 fold higher specific capacitance compared to the amorphous shell counterpart (NixSy@MoS2). Furthermore, the assembled asymmetric supercapacitor (Ni3S2@MoS2//rGO) also demonstrated a capacitance of 61Fg−1 at 0.5Ag−1, with energy and power densities of 21.7Whkg−1 at 400Wkg−1 and 12Whkg−1 at 2400Wkg−1 under an operating window of 1.6V. The asymmetric supercapacitor also showed a favorable cycle stability with 72% capacity retention over 4000 cycles at 10Ag−1. The improved electrochemical performance is attributed to the synergetic effect of the large accessible surface area and optimal contacts between the MoS2 and the electrolyte, as well as high capacitance of the metallic Ni3S2 core.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.