Abstract

Porous PZT-5H single crystals are grown by the solid state crystal growth (SSCG) method. The microstructure, phase structure and dielectric/piezoelectric properties are investigated for [001]-oriented porous PZT-5H single crystal. Evolution of phase structure with temperature is researched using in-situ temperature-dependent X-ray diffraction. The effect of pores on performance parameters is simulated using COMSOL Multiphysics® software. Ultrahigh piezoelectric coefficient d33 of up to about 1700 pC/N and effective piezoelectric coefficient d33* of up to about 3700 pm/V at 5 kV/cm are obtained. Moreover, the effective piezoelectric coefficient d33* is stable around 1900 pm/V under 3 kV/cm and 5 kV/cm in the temperature range of 70–160 °C. Importantly, the sample possess an extremely large figure of merit g33*d33 (111 × 10−12 m2/N), which is related to the presence of pores in the single crystal. This work expands the scope of PZT based single crystal and highlights their significant application possibilities in piezoelectric energy harvester, and actuator at high temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call