Abstract
A hybrid optoelectronic bistability is realized with the assistance of an ultrahigh-order mode (UHM) excited in a symmetrical metal-cladding waveguide (SMCW). PMN-PT ceramics is selected as the guiding layer, which possesses the voltage modulated refractive index and thickness by means of an electro-optical effect and converse-piezoelectric effect. An amplified voltage signal translated from the intensity of reflected light is exerted on the guiding layer, whose parameter variations can alter the resonance condition of the UHM and finally lead to a dramatic change in the intensity of the reflected light. Since the full width at half-maximum of the UHM is extremely narrow, a hysteresis behavior with a milliwatt threshold between the incident light and the reflected light can be achieved when a positive feedback is established. Our bistability configuration is simple and not limited to TM polarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Optical Society of America. A, Optics, image science, and vision
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.