Abstract

Polyethylene wear debris induces progressive osteolysis by increasing bone degradation and suppressing bone formation. Polyethylene particles inhibit the function of mature osteoblasts, but whether polyethylene particles also interfere with the proliferation and differentiation of osteoprogenitor cells is unknown. In this study, we investigated the effects of ultrahigh molecular weight polyethylene (UHMWPE) particles on the osteogenic activity of primary murine bone marrow osteoprogenitors and MC3T3-E1 preosteoblastic cells in vitro. Submicron-sized UHMWPE particles generated from wear simulator tests were isolated from serum-containing solution by density gradient centrifugation. The particles were coated onto the surface of culture wells at concentrations of 0.038, 0.075, 0.150, 0.300, and 0.600% v/v in a layer of type I collagen matrix. Primary murine bone marrow cells and MC3T3-E1 preosteoblasts were seeded onto the particle-collagen matrix and induced to differentiate in osteogenic medium for 20 days. Exposure of both cell populations to UHMWPE particles resulted in a dose-dependent decrease in mineralization, proliferation, alkaline phosphatase activity, and osteocalcin production when compared with control cells cultured on collagen matrix without particles. Complete suppression of osteogenesis was observed at particle concentrations > or =0.150% v/v. This study demonstrated that UHMWPE particles inhibit the osteogenic activity of osteoprogenitor cells, which may result in reduced periprosthetic bone regeneration and repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.