Abstract

Pd nanoparticles with a mean diameter of 6.7nm are prepared by gas phase cluster beam deposition. The Pd nanoparticle films exhibit excellent catalytic activity and stability for methanol oxidation. 3D hybrid nanostructures combined with multi-walled carbon nanotubes and few-layer graphene sheets are used as supports to further enhance the methanol electro-oxidation activity of the Pd nanoparticle catalysts by a factor of more than 2.7. The catalytic activity towards methanol electro-oxidation is characterized with cyclic voltammetry measurements. An ultrahigh electrochemical active surface area (ECSA) as large as 311m2g−1pd and a mass specific current corresponding to methanol oxidation levels as high as 4038mAmg−1pd are realized. These results can be attributed to the high electrochemical activity of the Pd nanoparticles and the unique conductive structure of the multi-walled carbon nanotubes/few-layer graphene sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.