Abstract

We report the theoretical results on use of neon as a tracer element to measure the multi-megagauss magnetic field, which is induced in the ultrahigh intense laser–matter interactions. The shape of Zeeman splitting of spectral line for 1s2p( 1P 1)→1s 2 transition of He-like neon are calculated for high-intensity laser produced quasi one-components plasma with the consideration of the electron collision broadening, electron collision shift and magnetic field splitting. The results show that all of the Zeeman splitting spectrum can be identified under Rayleigh criterion for the plasma with the electron temperature from 10 to 100 eV , the magnetic field from 10 6 to 10 8 G and the electron density 2×10 20 cm −3 . With both the electron temperature and magnetic field increasing, the requirement for the resolution power of the spectrometer decreases. If a spectrometer with the resolution power of 1/1000 is used, the measurement of the quasistatic magnetic field by Zeeman splitting of spectral lines is applicable when quasistatic magnetic field is larger than some tens of megaGauss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.