Abstract

In this study, a novel rapid solid carburizing process with a large diffusion depth using nano-diamonds (NDs) was conducted for low carbon steel. Changes of annealed NDs were obtained by Raman spectroscopy and transmission electron microscopy (TEM), and the results suggested that the NDs experience a stripping process before a special solid-reaction with surface iron atoms from steel substrate. Onion-like carbon (OLC) derived from the annealed NDs provided broken graphitic ribbons as carbon sources that accelerated the rate of adsorption and diffusion. Examination of the surface layer at equilibrium using TEM and X-ray photoelectron spectroscopy (XPS) also revealed the special state of carbon, and an ultrafine mixed phase microstructure was obtained by rapid solid-phase transformation. As a result, a surface hardened layer with ultrahigh hardness and a smooth transition region were realized. We believe that these kinds of diamond or graphitic structures with high activity states have an important influence not only on adsorption and diffusion but also on this special solid-phase transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.