Abstract
The rapid and effective removal of organic micropollutants (OMPs) from water remains a huge challenge for traditional water treatment techniques. Compared with powder adsorbents such as polymers and nanomaterials, the free-standing adsorptive membrane is possible for large-scale applications and shows promise in removing OMPs. Herein, inspired by aquatic plants, a novel free-standing adsorptive membrane (NPPM) with high water flux, strong adsorption affinity, and excellent reproducibility was prepared by one-step UV surface grafting. N-Vinylformamide (NVF) was employed to introduce multiple hydrophilic and hydrogen bonding sites on the surface of commercial polypropylene fiber membranes (PPM). The NPPM exhibits excellent water permeability and ultrahigh water flux (up to 40 000 L/(m2 h)) and could continuously remove a broad spectrum of OMPs from water. Its adsorption performance is 5-100 times higher than that of PPM and commercial membranes. Even in natural water sources such as tap water and river water, the NPPM shows unchanged adsorption performance and high OMPs removal efficiency (>95%). Notably, the NPPM has excellent regeneration performance and can be regenerated by hot water elution, which provides an environmentally friendly regeneration method without involving any organic solvent. Moreover, the synergy between hydrogen bonding and hydrophobic interaction is revealed, and the hydrophobic interaction provided by the hydrophobic substrate is proved to play a fundamental role in OMPs adsorption. The strong hydrogen bonds between the grafts and the OMPs are demonstrated by variable-temperature FTIR spectroscopy (vt-FTIR), 13C nuclear magnetic resonance spectroscopy (13C NMR), and simulation calculations. The strong hydrogen bonds could increase the enthalpy change and enhance the adsorption affinity, so the NPPM has a strong adsorption affinity, which is 100 times that of similar adsorption membranes. This study not only presents an adsorptive membrane with great commercial potential in the rapid remediation of a water source but also opens a pathway to develop an adsorptive membrane with high water flux and strong adsorption affinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.