Abstract

The superfast (picosecond range) high-current switching observed recently in a GaAs junction bipolar transistor is explained by practically homogeneous carrier generation in the volume of the switching channels by a moving train of avalanching Gunn domains of large amplitude. The very fast (∼200ps) reduction in the collector voltage is determined by shrinkage of each domain, provided the negative electron mobility in ultrahigh electric fields is taken into account and current filamentation takes place. The results of one-dimensional simulations show good quantitative agreement with experimental voltage and current wave forms when the simulated switching area is equal to the summed areas of the filaments observed in the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.