Abstract

Dense pseudocubic 0.62Na0.5Bi0.5TiO3-0.3Sr0.7Bi0.2TiO3-0.08BiMg2/3Nb1/3O3 (NBT-SBT-0.08BMN) ceramics with excellent recoverable energy density, Wrec = 7.5 J/cm3, and conversion efficiency, η = 92%, were synthesized. Large electric breakdown strength was facilitated by electrical homogeneity, high resistivity and large activation energy (1.86 eV). Transmission electron microscopy identified the presence of polar nano-regions (PNRs) in a matrix of short coherence in-phase and antiphase octahedral tilting. Combining polar and tilt order restricted the crystal classes of PNRs to tetragonal, orthorhombic and monoclinic. Using these symmetries, the enhancement of polarization was explained using Landau-Devonshire phenomenology and percolation theory. Octahedral tilting and introduction of larger B-site ions (Mg2+, Nb5+) inhibited long range polar coupling, minimizing strain and maximizing η. Wrec was further improved to 18 J/cm3 (>1000 kV/cm) in multilayers whose properties were stable from 0.01–100 Hz, from 20°C–160°C and up to 106 cycles, attractive for pulsed power applications and power electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.