Abstract

Microstructural modifications and appropriate element doping are necessary to simultaneously enhance the electrical conductivities and reduce the lattice thermal conductivities of thermoelectric materials. Herein, we propose a strategy of multielement doping combined with a burial sintering process to promote thermoelectric properties. Three-element doped Sr0.9La0.05Dy0.05Ti1−xNbxO3 (x = 0, 0.05, 0.10, 0.15, and 0.20) powders were synthesized by high-energy ball milling, and corresponding bulk samples were prepared by carbon burial sintering. In the bulk samples, we obtained the desired microstructures composed of shell-vesicular architectures with dense dislocations and second phase particles. These materials had ultrahigh electrical conductivities (∼5300 S cm−1 at 300 K), low lattice thermal conductivities (∼1.6 W m−1 K−1 from 700 to 1100 K when x = 0.2) and low total thermal conductivities (minimum value of 2.95 W m−1 K−1 when x = 0.05 at 1100 K). The maximum zT values were 0.28 when x = 0.05 and 0.27 when x = 0.2 at 1100 K. This strategy provides a possible direction for improving the thermoelectric properties of SrTiO3 based materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.