Abstract

Ultra-intense laser-plasma wakefield accelerator possess several superior properties compared with the traditional radio-frequency accelerators. These characteristics include femtosecond duration, micro-source size, and ultra-dense beam density, result in highly advantageous for various important applications. In this paper, we reviewed the generation of ultra-intense and high charge electron beam based on laser-plasma acceleration and its nuclear applications in Shanghai Jiao Tong University, including the production of 10 s nC charge beams, the generation of ultra-high flux neutron source on the order of 1019 n/cm2/s, and the excitation of nuclear isomers with the peak efficiency on the order of 1015 particle/s. This laser driving ultra-dense electron source, in conjunction with the plasma environment, presents immense potential in addressing critical problems in astrophysics, and facilitating various nuclear applications. Based on above progress in nuclear astrophysics, a new research plateform about laboratory astrophysics with a 2.5 PW laser will be constructed in TDLI institute.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.