Abstract

In this Letter, we show an ultralarge capacity for three-dimensional optical data storage inside transparent fluorescent tape using the two-photon absorption photo-bleaching method. We can obtain transparent fluorescent tape by means of the simple dip method. We successfully demonstrate recording and reading of six layers of binary data bits with lateral separation of 2 µm and longitudinal layer separation of 3 µm. Thus, this result leads to a storage density of approximately ${80}\;{{\rm Gbits/cm}^3}$80Gbits/cm3. Therefore, we can realize authentic ultrahigh capacity optical data storage using long transparent fluorescent tape in the future, like magnetic tape, and fundamentally solve the data explosion disaster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.