Abstract

An ultrasonic-assistant fore-modified method was designed to develop the self-functionalized biochar (SFB) with enhanced adsorbability. Characterized by different morphologies, SFB was presenting particular groups of carbon micro-spheres. Possessing ultrahigh surface area of 2368 m2/g, SFB exhibited excellent adsorption capacity (up to 497 mg/g) towards traditional antibiotic. Besides, more functional groups, which played important roles on the solid-liquid interface interaction, posed on the surface of SFB. The removal efficiency of levofloxacin was up to 99.93 % in the competitive system. Adsorption mechanism was analyzed based on the results of FTIR, kinetics, isotherms and competitive adsorption experiments. The chemisorption affinity on the solid-liquid interface was strong enough, which was proved by isotherms, thermodynamics and Kd analyses. Meanwhile, SFB has presented a good resistance against humid acid interference in aqueous environment. Thus, the ultrasonic-assistant fore-modified method was potential in dramatically improving the feature of biochars. SFB presented excellent adsorbability to antibiotics and exhibits extraordinary potential in wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.