Abstract

(19)F magnetic resonance imaging (MRI) is a powerful noninvasive, sensitive, and accurate molecular imaging technique for early diagnosis of diseases. The major challenge of (19)F MRI is signal attenuation caused by the reduced solubility of probes with increased number of fluorine atoms and the restriction of molecular mobility. Herein, we present a versatile one-pot strategy for the fabrication of a multifunctional nanoprobe with high (19)F loading (∼2.0 × 10(819)F atoms per Cu1.75S nanoparticle). Due to the high (19)F loading and good molecular mobility that results from the small particle size (20.8 ± 2.0 nm) and ultrathin polymer coating, this nanoprobe demonstrates ultrahigh (19)F MRI signal. In vivo tests show that this multifunctional nanoprobe is suitable for (19)F MRI and photothermal therapy. This versatile fabrication strategy has also been readily extended to other single-particle nanoprobes for ablation and sensitive multimodal imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.