Abstract

Manganese peroxidase (MnP) is an extracellular heme enzyme produced by the lignin-degrading white-rot fungus Phanerochaete chrysosporium. MnP catalyzes the peroxide-dependent oxidation of Mn II to Mn III. The Mn III is released from the enzyme in complex with oxalate, enabling the oxalate–Mn III complex to serve as a diffusible redox mediator capable of oxidizing lignin, especially under the mediation of unsaturated fatty acids. One heme propionate and the side chains of Glu35, Glu39 and Asp179 have been identified as Mn II ligands in our previous crystal structures of native MnP. In our current work, new 0.93 Å and 1.05 Å crystal structures of MnP with and without bound Mn II, respectively, have been solved. This represents only the sixth structure of a protein of this size at 0.93 Å resolution. In addition, this is the first structure of a heme peroxidase from a eukaryotic organism at sub-Ångstrom resolution. These new structures reveal an ordering/disordering of the C-terminal loop, which is likely required for Mn binding and release. In addition, the catalytic Arg42 residue at the active site, normally thought to function only in the peroxide activation process, also undergoes ordering/disordering that is coupled to a transient H-bond with the Mn ligand, Glu39. Finally, these high-resolution structures also reveal the exact H atoms in several parts of the structure that are relevant to the catalytic mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call