Abstract

Reliable and energy-efficient wireless transmission is of critical importance to the success of future advanced Internet of Things (IoT). Due to the sporadic nature of IoT transmissions, the energy consumption of the individual IoT transmission session varies dramatically with the instantaneous operating environment as well as the quality of service (QoS) requirements. In this paper, we analyze and design the energyefficient relay transmission systems from an individual data transmission session perspective. Specifically, we consider a dualhop transmission system with a decode-and-forward relay that is solely powered by wireless power transfer from source node. For both time switching and power splitting modes of simultaneous power and information transmission, we analyze and minimize the total energy consumption of the system when transmitting a fixed amount of data, under a piecewise linear energy harvesting (EH) model. Closed-form expressions for optimal transmission parameters are obtained with and without the consideration of latency constraint. Through selected numerical results, we illustrate various design tradeoffs between energy consumption and latency constraint. We show that with optimal transmission parameters, relay transmission with energy transfer can achieve considerable energy saving compared to direct transmission when the direct link quality is poor and the latency constraint is not stringent. We also show that with optimized parameters, power splitting mode leads to lower energy consumption and smaller transmission duration than time switching mode, at the cost of higher implementation complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call