Abstract

Peripheral nerve mapping tools with higher spatial resolution are needed to advance systems neuroscience, and potentially provide a closed-loop biomarker in neuromodulation applications. Two critical challenges of microscale neural interfaces are 1) how to apply them to small peripheral nerves, and 2) how to minimize chronic reactivity. A flexible microneedle nerve array (MINA) is developed, which is the first high-density penetrating electrode array made with axon-sized silicon microneedles embedded in low-modulus thin silicone. The design, fabrication, acute recording, and chronic reactivity to an implanted MINA, are presented. Distinctive units are identified in the rat peroneal nerve. The authors also demonstrate a long-term, cuff-free, and suture-free fixation manner using rose bengal as a light-activated adhesive for two time-points. The tissue response is investigated at 1-week and 6-week time-points, including two sham groups and two MINA-implanted groups. These conditions are quantified in the left vagus nerve of rats using histomorphometry. Micro computed tomography (micro-CT) is added to visualize and quantify tissue encapsulation around the implant. MINA demonstrates a reduction in encapsulation thickness over previously quantified interfascicular methods. Future challenges include techniques for precise insertion of the microneedle electrodes and demonstrating long-term recording.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.