Abstract

Electron-beam (e-beam) deposition of carbon on a gold substrate yields a very flat (0.43 nm of root-mean-square roughness), amorphous carbon film consisting of a mixture of sp2- and sp3-hybridized carbon with sufficient conductivity to avoid ohmic potential error. E-beam carbon (eC) has attractive properties for conventional electrochemistry, including low background current and sufficient transparency for optical spectroscopy. A layer of KCl deposited by e-beam to the eC surface without breaking vacuum protects the surface from the environment after fabrication until dissolved by an ultrapure electrolyte solution. Nanogap voltammetry using scanning electrochemical microscopy (SECM) permits measurement of heterogeneous standard electron-transfer rate constants (k°) in a clean environment without exposure of the electrode surface to ambient air. The ultraflat eC surface permitted nanogap voltammetry with very thin electrode-to-substrate gaps, thus increasing the diffusion limit for k° measurement to >14 cm/s for a gap of 44 nm. Ferrocene trimethylammonium as the redox mediator exhibited a diffusion-limited k° for the previously KCl-protected eC surface, while k° was 1.45 cm/s for unprotected eC. The k° for Ru(NH3)63+/2+ increased from 1.7 cm/s for unprotected eC to above the measurable limit of 6.9 cm/s for a KCl-protected eC electrode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.