Abstract
Structural refinement by cold rolling (10 to 80 pct reductions) of interstitial free (IF) steel containing Mn and B has been investigated from samples with different initial structures: (a) lath martensite, (b) coarse ferrite (grain size 150 μm), and (c) fine ferrite (22 μm). Unalloyed IF steel with a coarse grain size (120 μm) has also included based on a previous study. Deformation microstructures and structural parameters have been analyzed by transmission electron microscopy and electron backscatter diffraction, and mechanical properties have been characterized by hardness and tensile testing. At low to medium strains, lath martensite transforms into a cell block structure composed of cell block boundaries and cell boundaries with only a negligible change in strength. At medium to large strains, cell block structures in all samples refine with increasing strain and the hardening rate is constant (stage IV). A strong effect of the initial structure is observed on both the structural refinement and the strength increase. This effect is largest in lath martensite and smallest in unalloyed ferrite. No saturation in structural refinement and strength is observed. The discussion covers the transformation of lath martensite into a cell block structure at low to medium strains where the driving force is suggested to be a decrease in the dislocation line energy. Medium to large strain-hardening mechanisms are discussed together with structure-strength relationships assuming additive stress contributions from dislocations, boundaries, and elements in solid solution. Good agreement is found between flow stress predictions and stress values observed experimentally both in the initial undeformed martensite and in deformed samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.