Abstract
Under high-temperature and high-pressure conditions, the long-period stacking-ordered structure in Mg85Y9Zn6 transforms to a dual-phase structure consisting of a hexagonal close-packed lattice and a face-centered cubic lattice. After further solidification at high-pressure, unique ultrafine microstructures are formed. The alloy recovered after subjected at 10 GPa and 973 K exhibited a fine lamella structure, and a 0.2% proof stress (σ0.2) of 480 MPa obtained by the compression test. Further the alloy recovered after subjected at 10 GPa and 1273 K, a unique spherulite structure were formed, and its σ0.2 improved to 780 MPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.