Abstract

Under high-temperature and high-pressure conditions, the long-period stacking-ordered structure in Mg85Y9Zn6 transforms to a dual-phase structure consisting of a hexagonal close-packed lattice and a face-centered cubic lattice. After further solidification at high-pressure, unique ultrafine microstructures are formed. The alloy recovered after subjected at 10 GPa and 973 K exhibited a fine lamella structure, and a 0.2% proof stress (σ0.2) of 480 MPa obtained by the compression test. Further the alloy recovered after subjected at 10 GPa and 1273 K, a unique spherulite structure were formed, and its σ0.2 improved to 780 MPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call