Abstract

To obtain stable and ultrafine Pt nanoclusters, a trigonal prismatic coordination cage with the sulfur atoms on the edges was solvothermally synthesized to confine them. In the structure of {Ni24(TC4A-SO2)6(TDC)12 (H2O)6} (H4TC4A-SO2 = p-tert-butylsulfonylcalix[4]arene; H2TDC = 2,5-thiophenedicarboxylic acid), three Ni4-(TC4A-SO2) SBUs are bridged by three TDC ligands into a triangle and two such triangles are pillared by three pairs of TDC ligands to form a trigonal prism. The cage cavity has 12 sulfur atoms on the surface. Because of the porous structure and strong covalent interaction between metal and sulfur, ultrafine Pt nanoclusters composed of less than ∼18 Pt atoms can be facilely confined in the present trigonal prismatic cage (Pt@CIAC-121). The as-synthesized Pt NCs exhibit higher electrocatalytic activity than commercial Pt/C toward hydrogen evolution reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.