Abstract

AbstractPrecise size‐controlled synthesis and multiscale assembly of ultrafine non‐noble‐metal‐based catalysts play a key role in electrochemical energy conversion. Herein, a novel colloid‐confinement strategy for facile synthesis of ultrafine molybdenum carbide nanocrystals with sub‐2 nm average size assembled in carbon foams (uf‐Mo2C/CF) is reported. First, uniformly sized colloidal SiO2 nanospheres are chosen to confine the metal source (NH4)6Mo7O24 molecules and the glucose is as carbon source. Subsequently, by a high temperature reduction–carbonization, Mo2C nanocrystals are achieved and uniformly assembled on the in situ formed amorphous carbon foams. The as formed uf‐Mo2C/CF demonstrates superior hydrogen evolution activity and outstanding stability in the whole pH range. These results indicate the validity of size control and multiscale structural assembly of metal carbide nanocrystals by consideration of the overall mass transport, accessibility, and quantity, as well as the capability of the active sites toward efficient electrocatalytic hydrogen evolution reaction. This strategy can also be expanded to other energy‐related application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.