Abstract
Stainless steel composites combine corrosion resistance and toughness of the metallic matrix with wear resistance granted by hard reinforcing nanoparticles. Given their near-net-shape manufacturing characteristics, additive manufacturing techniques are attractive to produce these hard and wear-resistant classes of materials with low machinability. In this work, from a SAF 2205 duplex stainless steel with boron addition, laser powder bed fusion (LBPF) was employed to produce an ultrafine-grained (∼1 µm), dense (porosity ∼0.1 %), and crack-free ferritic-induced matrix composite with Cr2B-nanoborides reinforcing the grain boundaries (GBs) without formation of Cr-depleted regions. The composite showed significant higher hardness (up to 456 HV0.5) and wear resistance (4.4 x 10−5 mm3 N−1 m−1) in sliding condition compared to a hot-rolled (225 HV0.5 and 2.9 x 10−3 mm3 N−1 m−1) and a LPBF-produced SAF 2205 (314 HV0.5 and 3.3 x 10−4 mm3 N−1 m−1).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.