Abstract

The microstructure evolution and the deformation behavior of a Cu-0.3%Cr-0.5%Zr alloy subjected to multidirectional forging at a temperature of 673 K under a strain rate of about 10-3 s-1 were studied. Following a rapid increase in the flow stress during straining to about 1, the strain hardening gradually decreases, leading to a steady-state flow behavior at total strain above 2. The multidirectional forging led to the development of ultrafine grained microstructures with mean grain sizes of 0.9 μm and 0.64 μm in the solution treated and aged samples, respectively. The presence of second phase precipitates promoted the grain refinement. After processing to a total strain of 4, the fractions of ultrafine grains (D < 2 μm) comprised 0.36 and 0.59 in the solution treated and aged samples, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call