Abstract

Metallic nanoparticles have attracted intense interest for the potential applications in biocompatibility due to the reduced particle size. However, the methods to produce metallic nanoparticles usually produce an inhomogeneous size distribution. In this work, Cu nanoparticles were generated using a gas-aggregation cluster source technique, employing a specially designed quadrupole mass filter to control the size of the nanoparticles with a mass resolution (m/[Formula: see text]m) of 5. Transmission electron microscopic (TEM) analysis was used to confirm the size control of our technique. The generally high angular electronic scattering analysis revealed the spherical shapes of the Cu nanoparticles. We used beams of these nanoparticles to prepare nano-granular films on a Si substrate. Their antibacterial effect of the modified materials on Escherichia coli was assessed by means of a bacterial adhesion test. Our results may not only reveal the cluster technique to produce the uniform metallic nanoparticles, but also form the basis of antibacterial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call