Abstract

Electrocatalytic production of hydrogen peroxide (H2O2) by two-electron oxygen reduction reaction (2e– ORR) under acidic condition has been considered to have great application value. Co nanoparticles (CoNPs) coupled with N-doped carbon are a class of potential electrocatalysts. The effective strategies to further enhance their performances are to improve the active sites and stability. Herein, the material containing ultrafine CoNPs confined in a nitrogen-doped carbon matrix (NC@CoNPs) was synthesized by pyrolyzing corresponding precursors, which was obtained through regulating the topological structure of ZIF-67/ZIF-8 with dopamine (DA). The DA self-polymerization process induced the formation of CoNPs with smaller sizes and formed polydopamine film decreased the detachment of CoNPs from the catalyst. High density of Co-Nx active sites and defective sites could be identified on NC@CoNPs, leading to high activity and H2O2 selectivity, with an onset potential of 0.57 V (vs. RHE) and ∼90% selectivity in a wide potential range. An on-site electrochemical removal of organic pollutant was achieved rapidly through an electro-Fenton process, demonstrating its great promise for on-site water treatment application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call