Abstract
Nano-sized titanium oxide particles were synthesized in a stationary, laminar, premixed, stagnation flame burning an ethylene–oxygen–argon mixture at an equivalence ratio of 0.36 under the atmospheric pressure. The titanium precursor, titanium tetraisopropoxide (TTIP), was fed into the flame by a carrier argon flow through a heated TTIP bath. Particles synthesized in this flame were characterized for their size distribution, morphology, phase purity, and crystal structure, by scanning mobility particle sizer, transmission electron microscopy, and X-ray diffraction. It was found that the mean diameter of the particles was highly controllable and ranged from 3 to 6 nm depending on TTIP loading. The particle size was nearly uniform, and particles appeared to be single crystals without excessive aggregation. XRD analyses show that particles directly synthesized in the flame are pure anatase. Upon sintering and size growth on the flame stabilizer, a notable portion of particles transformed into rutile with much larger crystal sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.