Abstract

(Bio)fouling is the most common problem in membrane processes used in water production. It is also a reported unavoidable problem, with mitigation strategies being frequently ineffective in addressing this problem. An ultrapure water plant (UPW) in Emmen (The Netherlands), fed with secondary effluent, comprises the following subsequent treatment steps: ultrafiltration (UF), biological oxygen-dosed activated carbon (BODAC) filtration and reverse osmosis (RO). The BODAC filters were designed to prevent fouling in RO membranes, and for ten years, they have been operated without significant fouling issues. The present work aims to provide insight into the role of the full-scale UF + BODAC in fouling prevention, by conducting a mass balance (MB) analysis to assess the removal/release of common fouling precursors. Positive MB results were noticed for particulate organic compounds, iron (Fe) and manganese (Mn) meaning their constant removal in the UF + BODAC. The UF + BODAC was shown to be an effective nitrification system, effectively converting all the ammonium and nitrite to nitrate. In conclusion, the combined removal of organics, Fe, and Mn species and nitrification by UF + BODAC is most likely an important factor in downstream fouling prevention, making this system an attractive process for fouling prevention. Nevertheless, further investigations to discover the mechanisms involved are needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.