Abstract

Water‐in‐CO2 (W/CO2) reverse microemulsions stabilized with 1100 Da poly(ethylene glycol)‐poly(propylene glycol)‐poly(ethylene glycol) block copolymer were recovered using an ultrafiltration ceramic membrane in a custom high‐pressure cross‐flow separation unit. Viscosity‐corrected liquid CO2 flux (298 K) through the membrane was investigated as a function of time and surfactant concentration to determine the cake layer mass transfer resistance. Rapid CO2 flux decline was observed with increasing surfactant concentration, denoting cake layer buildup on the membrane surface. For instance, at 0.09 and 0.55 wt% surfactant, the ratio of cake resistance to membrane resistance was 0.4 and 3.8, respectively. Based on our previous work, the reverse‐micelles retain their aqueous core and are not altered during filtration. Ultimately, inorganic membrane separations can reduce energy consumption associated with compression/expansion cycles typically used in CO2‐based processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.