Abstract

Here, we report for the first time using of the nontoxic chitosan/adipic acid cross-linked membrane CS/AA in the separation of methylene blue and reactive yellow-145 from aqueous phase. The reason we chose adipic acid as a cross-linking agent is because it gives the cross-linked membrane moderate flexibility due to the presence of four methylene groups in its structure. The structure of the cross-linked membrane CS/AA and their properties were confirmed through, FTIR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and BET analysis. The thermal properties of membrane indicated an improvement in its flexibility and hydrophobicity, but this improvement was accompanied by a decrease in its thermal stability. pHpzc value and porosity of the CS/AA were 7.88, and 73.95 % respectively. The average pore radius distribution ranged from 2 to 27 nm. The prepared cross-linked membrane provides spontaneous and continuous purification of water with a high efficiency. This is due to the membrane CS/AA ability to separate methylene blue and reactive yellow-145 from the aqueous phase almost completely. The results revealed that the removal efficiency and permeation flux for MB were 100 % and 1 L/m2.h respectively at initial dye concentration of (4,8) mg/L, at 1 bar, and the removal efficiency and permeation flux for RY-145 were (94,96) % and (1.06, 2.09) L/m2.h respectively at 100 mg/L and at (1,1.5) bar. Such cross-linked nanopore polymer membranes provide a new approach for emerging novel purification systems, principally in the field of environmental field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.