Abstract
We investigated the water H-bond network and its dynamics in Ni2Cl2BTDD, a prototypical MOF for atmospheric water harvesting, using linear and ultrafast IR spectroscopy. Utilizing isotopic labeling and infrared spectroscopy, we found that water forms an extensive H-bonding network in Ni2Cl2BTDD. Further investigation with ultrafast spectroscopy revealed that water can reorient in a confined cone up to ∼50° within 1.3 ps. This large angle reorientation indicates H-bond rearrangement, similar to bulk water. Thus, although the water H-bond network is confined in Ni2Cl2BTDD, different from other confined systems, H-bond rearrangement is not hindered. The picosecond H-bond rearrangement in Ni2Cl2BTDD corroborates its reversibility with minimal hysteresis in water sorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.