Abstract

Optics For applications in ultrafast communication, all-optical switches will require low energy consumption, high speed, a strong modulation ratio, a small footprint, and on-chip integration. Although the small footprint and on-chip integration are accessible, the trade-off between low energy consumption and high speed has been challenging. Huang et al. exploited the idea of bound states in the continuum, effectively a high–quality ( Q ) cavity without the physical cavity, to design vortex lasers with highly directional output and single-mode operation. With the trade-off between low energy consumption and high speed now broken, it should be possible to realize ultrafast optical switching that meets all the requirements of modern classic and quantum information. Science , this issue p. [1018][1] [1]: /lookup/doi/10.1126/science.aba4597

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.