Abstract

Viscosity is an important property of out-of-equilibrium systems such as active biological materials and driven non-Newtonian fluids, and for fields ranging from biomaterials to geology, energy technologies and medicine. However, noninvasive viscosity measurements typically require integration times of seconds. Here we demonstrate a four orders-of-magnitude improvement in speed, down to twenty microseconds, with uncertainty dominated by fundamental thermal noise for the first time. We achieve this using the instantaneous velocity of a trapped particle in an optical tweezer. To resolve the instantaneous velocity we develop a structured-light detection system that allows particle tracking with megahertz bandwidths. Our results translate viscosity from a static averaged property, to one that may be dynamically tracked on the timescales of active dynamics. This opens a pathway to new discoveries in out-of-equilibrium systems, from the fast dynamics of phase transitions, to energy dissipation in motor molecule stepping, to violations of fluctuation laws of equilibrium thermodynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call