Abstract
Time-resolved sum-frequency vibrational spectroscopy permits the study of hitherto neglected ultrafast vibrational dynamics of neat water interfaces. Measurements on interfacial bonded OH stretch modes revealed relaxation behavior on sub-picosecond time scales in close resemblance to that of bulk water. Vibrational excitation is followed by spectral diffusion, vibrational relaxation, and thermalization in the hydrogen-bonding network. Dephasing of the excitation occurs in </=100 femtoseconds. Population relaxation of the dangling OH stretch was found to have a time constant of 1.3 picoseconds, the same as that for excitation transfer between hydrogen-bonded and unbonded OH stretches of water molecules surrounded by acetone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.