Abstract

A universal mechanism of ultrafast 2-electron orbital swap is discovered through 2-photon sequential double ionization of Li. After a 1s electron in Li is ionized by absorbing an extreme ultraviolet photon, the other 2 bound electrons located on 2 different shells have either parallel or antiparallel spin orientations. In the latter case, these 2 electrons are in the superposition of the singlet and triplet states with different energies, forming a quantum beat and giving rise to the 2-electron orbital swap with a period of several hundred attoseconds. The orbital swap mechanism can be used to manipulate the spin polarization of photoelectron pairs by conceiving the attosecond-pump attosecond-probe strategy and thus serves as a knob to control spin-resolved multielectron ultrafast dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call