Abstract

We investigate the photocarrier dynamics in bulk PdSe2, a layered transition metal dichalcogenide with a novel pentagonal structure and unique electronic and optical properties. Using femtosecond transient absorption microscopy, we study the behavior of photocarriers in mechanically exfoliated bulk PdSe2 flakes at room temperature. By employing a 400 nm ultrafast laser pulse, electron-hole pairs are generated, and their dynamics are probed using an 800 nm detection pulse. Our findings reveal that the lifetime of photocarriers in bulk PdSe2 is approximately 210 ps. Furthermore, by spatially resolving the differential reflection signal, we determine a photocarrier diffusion coefficient of about 7.3 cm2 s-1. Based on these results, we estimate a diffusion length of around 400 nm and a photocarrier mobility of approximately 300 cm2 V-1 s-1. These results shed light on the ultrafast optoelectronic properties of PdSe2, offer valuable insights into photocarriers in this emerging material, and enable design of high-performance optoelectronic devices based on PdSe2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call