Abstract
Herein, an ultrafast, sensor has been developed for trace-level detection of Ammonia (NH3) gas using hexagonal-shaped ZnO nanoparticles (NPs). The ZnO NPs were grown by low-cost eco-friendly green synthesis process and characterized by various techniques. The electron microscopic images reveal the synthesis of uniform, highly dense and hexagonal-shaped ZnO NPs. The UV–Vis spectra illustrate a band gap of 3.89eV. XRD, XPS and Raman studies explain the high-quality hexagonal wurtzite-structure of ZnO NPs showing presence of electronic/chemical states of ions. The NH3 gas sensing properties of ZnO NPs were evaluated at different concentrations. The sensor exhibited an excellent response value of 2.5 at 5 ppm NH3 wherein quick response time was 5 s and fastest recovery time was 8 s. The sensing results could be attributed to the optimum number of oxygen species and active sites which are responsible for enhanced performance of the developed ZnO NPs based sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.