Abstract

Intramolecular hydrogen abstraction reactions among ketoprofen (KP) and purine nucleoside dyads have been proposed to form ketyl-sugar biradical intermediates in acetonitrile. Femtosecond transient absorption studies on KP and purine nucleoside dyads reveal that the triplet state of the KP moiety of the dyads with cisoid structure decay faster (due to an intramolecular hydrogen abstraction reaction to produce a ketyl-sugar biradical intermediate) than the triplet state of the KP moiety of the dyads with transoid structure detected in acetonitrile solvent. For the cisoid 5-KP-dG dyad, the triplet state of the KP moiety decays too fast to be observed by ns-TR(3); only the ketyl-sugar biradical intermediates are detected by ns-TR(3) in acetonitrile. For the cisoid 5-KP-dA dyad, the triplet states of the KP moiety could be observed at early nanosecond delay times, and then it quickly undergoes intramolecular hydrogen abstraction to produce a ketyl-sugar biradical intermediate. For the cisoid 5-KPGly-dA and transoid 3-KP-dA dyads, the triplet state of the KP moiety had a longer lifetime due to the long distance chain between the KP moiety and the purine nucleoside (5-KPGly-dA) and the transoid structure (3-KP-dA). The experimental and computational results suggest that the ketyl-sugar biradical intermediate is generated with a higher efficiency for the cisoid dyad. However, the transoid dyad exhibits similar photochemistry behavior as the KP molecule, and no ketyl-sugar biradical intermediate was observed in the ns-TR(3) experiments for the transoid 3-KP-dA dyad.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.