Abstract

Time- and angle-resolved photoemission spectroscopy (TrARPES) is a powerful technique for capturing the ultrafast dynamics of charge carriers and revealing photo-induced phase transitions in quantum materials. However, the lack of widely tunable probe photon energy, which is critical for accessing the dispersions at different out-of-plane momentum kz in TrARPES measurements, has hindered the ultrafast dynamics investigation of 3D quantum materials, such as Dirac or Weyl semimetals. Here, we report the development of a TrARPES system with a highly tunable probe photon energy from 5.3 to 7.0eV. The tunable probe photon energy is generated by the fourth harmonic generation of a tunable wavelength femtosecond laser source by combining a β-BaB2O4 crystal and a KBe2BO3F2 crystal. A high energy resolution of 29-48meV and time resolution of 280-320fs are demonstrated on 3D topological materials ZrTe5 and Sb2Te3. Our work opens up new opportunities for exploring ultrafast dynamics in 3D quantum materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.